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Let V be a nonempty closed subset of a separated locally convex space X. Given
a lower semi-continuous quasi-convex function J defined on X. one defines here the
so-called j-projection PfY' Likewise, given an upper semi-continuous quasi-convex
function Jon X, one defines here the so-calledj-farthest point mapping Qt.,. In this
exposition, properties of V related to the j-projection Pt., and the j-farthest point
mapping QfY are defined and several relationships between these properties and
continuity of the mappings PI." Qt., are explored.

1. INTRODUCTION

Let X, Y be a pair of linear spaces put in duality by a separating bilinear
form < , >and equipped with locally convex topologies compatible with the
pairing. Let f be a lower semi-continuous (abbr. l.s.c.) (resp., upper semi
continuous (abbr. u.s.c.)) quasi-convex function defined on X and satisfying
f(0) = O. Recall that (cf. Daniel [6, p. 14]) f is said to be quasi-convex if the
sub-level sets S.A. := {x E X: f(x) ~ it} are convex for each it E IR. Given a
nonempty closed subset V of X and x E X, let fv(x) (resp. fV (x)) denote
the number: inf{f(x - v): v E V} (resp. sup{f(x - v): v E V}), possibly
= -00 (resp. 00). Let PI.V(x) (resp. QI,V(x)) denote the set {v E V:f(x - v) =
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fv(x)} (resp. the set {vEV:f(x-v)=fV(x)}), eventually void. The set
valued mapping Pf.v (resp. Qf.V) is called fprojection (resp. fjarthest point
mapping) supported on V. V is said to befproximinal (resp.fChebyshev) if
Pf.V(x) *0 (resp. Pf.v(x) is a singleton) for each x E X. Likewise, V is said
to have the f-farthest point property, abbr. (fFP)-property (resp. funique
farthest point property, abbr. (fUFP)-property) if Qf.v(x) * 0 (resp. QfJ(x)
is a singleton) for each x E X. In case X is a normed space with the norm
topology and f is the given norm, there has been a lot of interest in studying
properties of the supporting set related to its fprojection (the so-called
metric projection in this case). A fairly up-to-date account of this appears in
the excellent survey article of Vlasov [18 ] (also, cf. Singer [17]). In this case
there has also been some recent interest in studying analogous properties of
sets related to farthest point mappings (e.g., cf. 11, 2, 7, 11, 12, 14 j).

In case f is a sub-linear function, properties of sets related to fprojections
andffarthest point mappings have been investigated in 19] and 110 I, respec
tively. The principal aim of the present exposition is to obtain results in the
same spirit as in [9] and 110 I when f is either a quasi-convex function or a
convex function satisfying f(8) = O. The key tools required for the purpose
are collected in Section 2. These are employed to fprojections in Sections 3
and 4 and to ffarthest point mappings in Section 5.

2. PRELIMINARY RESULTS

Let f: X -4 fR be a continuous convex function satisfying f(8) = O. For
r E fR, r >0, let Sr:= {x: f(x) ~ r} denote the sub-level subset of f Sr is a
convex absorbing set containing the origin 8 in its interior. Let
Pr(x) := inf{A. > 0: x E A.Sr} (x E X) denote the Minkowski guage of Sr' Then
Pr is a nonnegative continuous sublinear function. Given a nonempty closed
subset V of X we continue to employ the same terminology as in Section 1
with f replaced by Pr' such as the terms Pr-proximinal, Pr-Chebyshev, etc.

LEMMA 2.1. Let 0 < r l < r2 , then

Moreover, iff is sub-linear, then

(iii) and
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Proof This is evident. I

LEMMA 2.2. Suppose the convex function f satisfies the property.
There exists a continuous bijection lIf: IR + ---; fR + (IR + := the set of

nonnegative reaIs ) such that

Then one has

f(h) = lIf(A)f(x) (A ~ 0 and x EX).

and

(r> 0, A> 0).

Furthermore, for r> 0, Pr(x) = 0 implies f(x) = O.

Proof In view of (*), for r> 0 and A > 0, the equality Sr = IIASW(.t)r is
obvious. Also,

Pr(x) = inf{a >0: x E aSr}

. f a
=In {a>O:xETSw(Alrf

= APW(A)r(X).

If Pr(x) = 0 for some r> 0, then there is a sequence an> 0 such that
x E anSr and an ---; O. Sincef(xlan) = lIf(l/an)f(x) <rand lIf(l/an)---; 00, we
have f(x) = o.

LEMMA 2.3. Let f be a continuous convex function satisfying f(O) = 0
and let r >0, then

(i) f(x) <r <:> Pr(x) <1

(ii) f(x) = r <:> Pr(x) = 1

(iii) f(x) ~ r <:> Pr(x) ~ 1.

Proof This is well known. I

PROPOSITION 2.4. Let f be a continuous convex function satisfying
f«()) = 0 and let V be a nonempty closed subset of X. For x E X,

(i) if Pf,v(x) =1= 0 andfv(x) = r > 0, then Pf,v(x) = PPr,v(x);

(ii) if Qf,V(x) =1= 0 andr(x) = s > 0, then Qf,V(x) = Qp"v(x).
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Proof

fv(x) = r > O-=>- f(x- v)'~ r, v E V

¢:>Pr(X-V» 1, vEV

¢:> Prv(X) >1

-=>- Prv(X) = 1,

Also,

Vo E pt.v(X) ¢:> f(x - Vo) = r

¢:> Pr(X - Vo) = 1

¢:> Vo E Pp,.v(X) (since Prv(x) = 1).

This proves (i). The proof of (ii) is identical. I

PROPOSITION 2.5. Let f be a nonnegative continuous convex function
satisfying f(x) = 0 if and only if x = () and property (*). We have

(i) If V is fproximinal, then Pt. v = PP,. v for each r > O. Consequently,
V is Pr-proximinal and, moreover, V is Pr-Chebyshev for r> 0 if and only if
V is fChebyshev.

(ii) If V satisfies property (f- FP), then Qt. v = Qp,.v for each r> O.
Consequently V satisfies property (Pr - FP) and, moreover, V satisfies
property (Pr - UFP) for r> 0 if and only if V satisfies property (f- UFP).

Proof (i) Let V befproximinal. If fv(x) = 0, then x E V and Pt,v(x) =
pp,.v(x) = {x} for each r> O. If fv(x) = r > 0, then by Proposition 2.4 (i)
pt.v(x) = Pp"v(x). Let s> 0 be given. By property (*) choose A> 0 such
that 'II(A) = sir and f(Ax) = 'II(A)f(x) for x in X. By Lemma 2.2, Pr = APs '

Therefore Pp"v = Pp"v and this entails pt .v = pp,.v for each r> O. The
remaining conclusions are obvious.

(ii) The proof is analogous to that of (i). I

By way of an example,f(x) = xi +XI x 2 + 2xL x = (Xl' x 2 ) E IR 2, satisfies
hypothesis of the preceding proposition.

3. ON j-PROJECTIONS

Throughout this section, unless otherwise stated, we assumefto be a I.s.c.
quasi-convex function on X (equivalently, the sub-level sets 8 1 of fare
assumed closed and convex for each it E IR), and V to be a closed subset of
X. Recall (cf. Castaing and Valadier [5, Chap. 1]) that f is said to be inf-
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compact (resp. inf-locally compact) if the sub-level sets SA are compact (resp.
locally compact) for each AE IR, and f is said to be inf-bounded if the sub
level sets SA are bounded for each AE IR. It is well known (cf. [5, Chap. 1))
that in case f is a l.s.c. convex function, then with the topology a(X, Y) of X,
f is inf-compact iff its polar f* is r(Y, X) continuous at e (here r( Y, X)
denotes the Mackey topology of Y) and that with any compatible topology
of X, f is inf-locally compact iff epi(f) is locally compact (here epi(f)
denotes the epigraph of f). Also, in this case f is inf-bounded if eE core dom
(f*) (cf. Rockafellar [15, Theorem 10)).

The set V is said to be inf-compact if for each x E X, each minimizing net
Vo: in V (i.e., a net satisfying f(x - vo:) -t fv(x)) has a convergent subnet in
V. f is said to be strongly quasi-convex (cf. Daniel [6, p. 15)) if for
xl' Xz E X, XI *- Xz and 0 < A < 1, f(Ax I + (1 - A)Xz) <max{f(xt),f(xz)}'

We remark that with verbatim reproductions of proofs Propositions 2.1
and 2.2 and Theorem 2.2 of [9) extend to the case when f is a l.s.c. quasi
convex function and Corollary 2.2 to the case when f is a strongly quasi
convex function.

In case f is a continuous sub-linear function, it is easily verified that
x -t fv(x) is continuous. Moreover, if we assume V to be inf-compact, then
pt .v is U.S.c. (cf. [9, Proposition 2.4)). In what follows, we require the
following hypothesis on f (arbitrary) and V:

(HI) The function x -t fv(x) is continuous.

(Hz) For I> > 0 and a> 0 assigned arbitrarily, there exists f3 >0 such
that f(x) ~ a and f(y) ~ f3 imply f(x + y) ~ a + 1>.

By way of example, f(x)=x z (or f(x) = v'1XT), xE IR and V= [a,b]
satisfy (HI) and (Hz).

PROPOSITION 3.1. Let f be a continuous function satisfying hypotheses
(HI) and (Hz) and let V be inf-compact. Then pt .v is u.s.c.

Proof Consider the set A = {x E X: Pt,v(x) n C *- 0} for a closed subset
C of V. It suffices to prove that A is closed. Let {xAbe A be a net in A such
that xA-tXO' Choose vAEPt,v(xA)nC, for each AEA. Then
f(xA- VA) =fv(xA). Hence, by (Ht), limAf(xA- VA) =fv(xo). Let I> > 0 and
1>1> 0 be arbitrary. Set a =fv(xo) + 1>1 and select f3 > 0 as given by
hypothesis (Hz). There is Al E A such thatf(xo - xA) ~ f3 andf(xA- VA) ~ a
for A~ AI' Then by hypothesis (Hz),

Therefore, fv(xo) ~ limAf(xo - VA) ~ limAf(xo - VA) ~ fv(xo)' Whence,
limAf(xo - VA) = fv(xo) and VA is a minimizing net. V being inf-compact,
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{v.d has a convergent subnet converging to vo' C being closed, VoE C and
continuity off entails Vo E Pv(xo). Thus Xo E A and A is closed. I

THEOREM 3.2. Let f be a continuous, irif-bounded, quasi-convex function
and let V be a closed convex set. Assume that hypothesis (HI) is fulfilled.
Then Pf,V is U.s.c. if any of the following conditions hold:

(1) f is irif-locally compact;

(2) V is locally compact.

Proof Suppose that (2) holds. Then by an extension of Proposition 2.2
of [9], V isf-proximinal. Consider the set A = {x E X: PI,v(x) (J C *- 0}, for
C a closed subset of V. Let {xA: AE A} be a net in A such that x A-4 x o' It
would suffice to prove that X o EA. Choose v l E C satisfying f(xA - v.l ) =
fv(xA), for each AEA. By (HI)' limAf(xA - v.l ) = fv(xo)' Since f(-xA)-4
f(-xo), -xA eventually lies in Sr" where r l > f(-xo)' Likewise, x A - v~\

eventually lies in S r, for rz > fv(xo)' Since f is quasi-convex,
-VA =xA - VA -xA eventually lies in 2Sr, for r= max{r" rz }. Thus
vA E -2S r (J V, eventually. The latter set being closed, bounded, convex and
locally compact, it is compact. Thus vA has a convergent subnet converging
to v. Evidently v E Pr,v(xo) (J C and X o EA. I

Remark. If we add hypothesis (Hz) in the last theorem, then evidently, it
is a corollary of Proposition 3.1.

4. ON f-SOLARITY OF SETS

Throughout this section, f will be assumed to be a continuous convex
function satisfying f(O) = 0 and V will be assumed a closed subset of X.
Given v E V, let Str (V; v) := UVEV {v + A(V - v): 0 <A< I} denote the star
hull of V at v. The set V is said to be an f-sun (resp. astrict f-sun) if for each
x E X, vE PI.V(xa ) holds for some (resp. each) element vE PI.V(x) and each
a ~ 1, where x a = V +a(x - v). In case f is sub-linear or f satisfies the
conditions of Proposition 2.5, it is easily verified that V is an f-sun (resp. a
strictf-sun) if and only if, for some (resp. each) element vE PI.V(x), we have
vE pt.str(V, V)' For f sub-linear, this has been observed in [4].

PROPOSITION 4.1. Let f be as in Proposition 2.5 and let V be f
proximinal. If V is an f-sun (resp. a strict f-sun), then V is aPr-sun (resp. a
strict Pr-sun) for each r> O. Conversely, if V is aPr-sun (resp. a strict Pr
sun) for some r > 0, then V is a f-sun (resp. a strict f-sun).
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Proof By Proposition 2.5, Pf.V = PPr.v for each r> 0 and the proof
follows immediately from the definitions. I

The proof of the next theorem appears in [8].

THEOREM 4.2. Let p be a continuous, inj-compact sub-linear function
and let V be p-Chebyshev. Then V is a p-sun.

THEOREM 4.3. Let f be a nonnegative, continuous convex function which
satisfies

(i) f(x) = 0 if and only if x = ();
(ii) the property (*) of Lemma 2.2;

(iii) f is inf-compact.

Then each f-Chebyshev set is an f-sun.

Proof Let V be a closed f-Chebyshev set. In view of (i), it suffices to
consider x E X such thatfv(x) = r > O. Let p denote the Minkowski guage of
Sr' By Proposition 2.5 Pf,v = Pp,v and V is p-Chebyshev. Also, by (iii) p is
inf-compact, and hence, V is p-sun by the last theorem. By Proposition 4.1,
V is an f-sun. I

THEOREM 4.4. Let f be a nonnegative, continuous convex function
satisfying (i), (ii), (iii) of the last theorem and (iv) f is strictly convex and
Gateaux differentiable at each nonzero point of X.

Then, in X, the class of closed convex sets coincides with the class of
closed f-Chebyshev sets.

Proof Iff satisfies (iii) of the last theorem and (iv), then by an extension
of Corollary 2.2 of [9], a closed convex set V isf-Chebyshev. Conversely, let
V be a closed f-Chebyshev set in X. Then by the last theorem, V is an f-sun.
V being f-Chebyshev and f-sun, it follows in view of (i) and (iv) and
Proposition 1.3 of [13] that V is convex. I

Remark. If there is a continuous, inf-compact convex function f on X
satisfying f( () = 0, then X is finite dimensional. The above theorem is,
therefore, a generalization of the following well-known result of Motzkin,
Buseman (cf. Singer [16]): In a smooth and rotund Banach space of finite
dimension, the class of Chebyshev sets coincides with the class of closed
convex sets.
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5. ON .fFARTHEST POINT MAPPINGS

As in the last section, we assume for the most part f to be a continuous
convex function satisfyingf(O) = 0 and V to be closed subset of X. V is said
to be sup-compact if each maximizing net {va} in V (i.e., a net satisfying
f(x - va) -> fV (x)) has a convergent subnet.

PROPOSITION 5.1. Let f be an u.s.c. function and V be a sup-compact
subset of X. Then V has property (f - FP).

Proof This follows immediately from the definitions. I

PROPOSITION 5.2. Let V be a closed set such that fV (x) < ro for each
x E X and let f be an u.s.c. function. Consider the following statements:

(I) f is in.fcompact;

(2) V is .fbddly compact;

(3) V is sup-compact;

(4) V satisfies property (f - FP).

We have (1) => (2) => (3) => (4).

PROPOSITION 5.3. Let f be as in Proposition 2.5. Let Vo E Qp(xo)' for
Xo E X. Then Vo E Qr.v(vo+A(Xo - vo)) for all A~ 1.

Proof For f sub-linear, this is evident. If f satisfies the conditions of
Proposition 2.5, then Qt.v = Qp,.v for each r> 0 and the result follows from
the sub-linearity of Pro I

In case f is a continuous sub-linear function, it is easily verified that
x -> fV (x) is continuous. Moreover, if V is sup-compact, then Qr.v is U.S.c.

THEOREM 5.4. Let f be a continuous, in.fbounded, quasi-convex function.
Let V be a closed convex set such that fV (x) < ro, for each x E X and
assume the mapping x -> fV (x) to be continuous. Then Qt.v is U.S.C. if any of
the following conditions hold:

(1) f is in.flocally compact;

(2) V is locally compact.

Proof Under the given hypothesis V is inf-compact and by Proposition
5.2, V satisfies property (f - FP). The proof of the proposition is now
exactly analogous to the proof of Theorem 3.2. Hence, it is omitted. I
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Remark. In the preceding theorem, the hypothesis that f is inf-bounded
and fV (x) < 00 for each x E X, may be replaced by: V is bounded and
satisfies property (f- FP).

V is said to satisfy property (SF) if X o E X and Vo E Qt.v(xo) imply
V o E Qt,v(x,d, for each A,O <A< 1, where X,t = Vo+ A(Xo - vo)' This
property is motivated by Proposition 5.3 and yields an answer to the
question: when is a set satisfying property (f - UFP) a singleton?

THEOREM 5.5. Let f be as in Proposition 2.5 and let V satisfy property
(f- UFP). Assume that f is infcompact. Then V satisfies property (SF).

Proof. By Proposition 2.5, Qf.v= Qpr.v for each r> O. By Theorem 4.1
of [10], Pr being sub-linear, given X o E X and V o E Qpr,v(xo)' V o is in the set
Qpr,v(x) for each A, 0 < A< 1. Hence the same is true for Qr,v and V
satisfies property (SF). I

PROPOSITION 5.6. Let f be a nonnegative, continuous convex function
satisfying f(x) = 0 if and only if x = e. Then V satisfies property (SF) if and
only if V is a singleton.

Proof. This is evident. I

COROLLARY 5.7. Let f be as in Proposition 2.5 and assume that f is inf
compact. Then V satisfies property (f- UFP) if and only if V is a singleton.

Proof. This follows immediately from Theorem 5.5 and Proposition
5.6. I

The preceding corollary extends the main result of 11, Theorem 21.
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